In mechanical engineering, a rolling-element bearing, also known as a rolling bearing,ISO 15 is a bearing which carries a load by placing rolling elements (such as balls, cylinders, or cones) between two concentric, grooved rings called races. The relative motion of the races causes the rolling elements to rolling with very little rolling resistance and with little sliding.
One of the earliest and best-known rolling-element bearings is a set of logs laid on the ground with a large stone block on top. As the stone is pulled, the logs roll along the ground with little sliding friction. As each log comes out the back, it is moved to the front where the block then rolls onto it. It is possible to imitate such a bearing by placing several pens or pencils on a table and placing an item on top of them. See "bearings" for more on the historical development of bearings.
A rolling element rotary bearing uses a shaft in a much larger hole, and spheres or cylinders called "rollers" tightly fill the space between the shaft and the hole. As the shaft turns, each roller acts as the logs in the above example. However, since the bearing is round, the rollers never fall out from under the load.
Rolling-element bearings have the advantage of a good trade-off between cost, size, weight, carrying capacity, durability, accuracy, friction, and so on. Other bearing designs are often better on one specific attribute, but worse in most other attributes, although can sometimes simultaneously outperform on carrying capacity, durability, accuracy, friction, rotation rate and sometimes cost. Only are used as widely as rolling-element bearings. They are commonly used in automotive, industrial, marine, and aerospace applications. They are products of great necessity for modern technology. The rolling element bearing was developed from a firm foundation that was built over thousands of years. The concept emerged in its primitive form in Ancient Rome. After a long inactive period in the Middle Ages, it was revived during the Renaissance by Leonardo da Vinci, and developed steadily in the seventeenth and eighteenth centuries.
Bearings, especially rolling element bearings, are designed in a similar fashion across the board consisting of the outer and inner track, a central bore, a retainer to keep the rolling elements from clashing into one another or seizing the bearing movement, and the rolling elements themselves.
The internal rolling components may differ in design due to their intended purpose of application of the bearing. The main five types of bearings are ball, cylindrical, tapered, barrel, and needle.
Ball - the simplest following the basic principles with minimal design intention. Important to note the ability for more seizures is likely due to the freedom of the track design.
Cylindrical - For single axis movement for straight directional movement. The shape allows for more surface area to be in contact adding in moving more weight with less force at a greater distance.
Tapered - Primarily focused on the ability to take on axial loading axial loading and radial loading. radial loading It does this by using a conical structure enabling the elements to roll diagonally.
Barrel - Provides assistance to high radial shock loads that cause misalignment and uses its shape and size for compensation.
Needle - Varying in size, diameters, and materials these types of bearings are best suited for helping reduce weight as well as smaller cross sections application, typically higher load capacity than ball bearings and rigid shaft applications.
As in all radial bearings, the outer load is continuously re-distributed among the rollers. Often fewer than half of the total number of rollers carry a significant portion of the load. The animation on the right shows how a static radial load is supported by the bearing rollers as the inner ring rotates.
Toroidal roller bearings were introduced in 1995 by SKF as "CARB bearings". The inventor behind the bearing was the engineer Magnus Kellström.
There are three usual limits to the lifetime or load capacity of a bearing: abrasion, fatigue and pressure-induced welding.
Although there are many other apparent causes of bearing failure, most can be reduced to these three. For example, a bearing which is run dry of lubricant fails not because it is "without lubricant", but because lack of lubrication leads to fatigue and welding, and the resulting wear debris can cause abrasion. Similar events occur in false brinelling damage. In high speed applications, the oil flow also reduces the bearing metal temperature by convection. The oil becomes the heat sink for the friction losses generated by the bearing.
ISO has categorised bearing failures into a document Numbered ISO 15243.
Under controlled laboratory conditions, however, seemingly identical bearings operating under identical conditions can have different individual endurance lives. Thus, bearing life cannot be calculated based on specific bearings, but is instead related to in statistical terms, referring to populations of bearings. All information with regard to load ratings is then based on the life that 90% of a sufficiently large group of apparently identical bearings can be expected to attain or exceed. This gives a clearer definition of the concept of bearing life, which is essential to calculate the correct bearing size. Life models can thus help to predict the performance of a bearing more realistically.
The prediction of bearing life is described in ISO 281 and the ANSI/American Bearing Manufacturers Association Standards 9 and 11.
The traditional life prediction model for rolling-element bearings uses the basic life equation:
Where:
Basic life or is the life that 90% of bearings can be expected to reach or exceed. The median or average life, sometimes called Mean Time Between Failure (MTBF), is about five times the calculated basic rating life. Several factors, the 'ASME five factor model', can be used to further adjust the life depending upon the desired reliability, lubrication, contamination, etc.
The major implication of this model is that bearing life is finite, and reduces by a cube power of the ratio between design load and applied load. This model was developed in 1924, 1947 and 1952 work by Arvid Palmgren and Gustaf Lundberg in their paper Dynamic Capacity of Rolling Bearings. The model dates from 1924, the values of the constant from the post-war works. Higher values may be seen as both a longer lifetime for a correctly used bearing below its design load, or also as the increased rate by which lifetime is shortened when overloaded.
This model was recognised to have become inaccurate for modern bearings. Particularly owing to improvements in the quality of bearing steels, the mechanisms for how failures develop in the 1924 model are no longer as significant. By the 1990s, real bearings were found to give service lives up to 14 times longer than those predicted. An explanation was put forward based on fatigue life; if the bearing was loaded to never exceed the fatigue strength, then the Lundberg-Palmgren mechanism for failure by fatigue would simply never occur. This relied on homogeneous vacuum-melted steels, such as AISI 52100, that avoided the internal inclusions that had previously acted as stress risers within the rolling elements, and also on smoother finishes to bearing tracks that avoided impact loads. The constant now had values of 4 for ball and 5 for roller bearings. Provided that load limits were observed, the idea of a 'fatigue limit' entered bearing lifetime calculations. If the bearing was not loaded beyond this limit, its theoretical lifetime would be limited only by external factors, such as contamination or a failure of lubrication.
A new model of bearing life was put forward by Schaeffler Group and developed by SKF as the Ioannides-Harris model. ISO 281:2000 first incorporated this model and ISO 281:2007 is based on it.
The concept of fatigue limit, and thus ISO 281:2007, remains controversial, at least in the US.
In 2019, the Generalized Bearing Life Model was relaunched. The updated model offers life calculations also for hybrid bearings, i.e. bearings with steel rings and ceramic (silicon nitride) rolling elements. Even if the 2019 GBLM release was primarily developed to realistically determine the working life of hybrid bearings, the concept can also be used for other products and failure modes.
There are also many material issues: a harder material may be more durable against abrasion but more likely to suffer fatigue fracture, so the material varies with the application, and while steel is most common for rolling-element bearings, plastics, glass, and ceramics are all in common use. A small defect (irregularity) in the material is often responsible for bearing failure; one of the biggest improvements in the life of common bearings during the second half of the 20th century was the use of more homogeneous materials, rather than better materials or lubricants (though both were also significant). Lubricant properties vary with temperature and load, so the best lubricant varies with application.
Although bearings tend to wear out with use, designers can make tradeoffs of bearing size and cost versus lifetime. A bearing can last indefinitely—longer than the rest of the machine—if it is kept cool, clean, lubricated, is run within the rated load, and if the bearing materials are sufficiently free of microscopic defects. Cooling, lubrication, and sealing are thus important parts of the bearing design.
The needed bearing lifetime also varies with the application. For example, Tedric A. Harris reports in his Rolling Bearing Analysis on an oxygen pump bearing in the U.S. Space Shuttle which could not be adequately isolated from the liquid oxygen being pumped. All lubricants reacted with the oxygen, leading to fires and other failures. The solution was to lubricate the bearing with the oxygen. Although liquid oxygen is a poor lubricant, it was adequate, since the service life of the pump was just a few hours.
The operating environment and service needs are also important design considerations. Some bearing assemblies require routine addition of lubricants, while others are factory sealed, requiring no further maintenance for the life of the mechanical assembly. Although seals are appealing, they increase friction, and in a permanently sealed bearing the lubricant may become contaminated by hard particles, such as steel chips from the race or bearing, sand, or grit that gets past the seal. Contamination in the lubricant is abrasive and greatly reduces the operating life of the bearing assembly. Another major cause of bearing failure is the presence of water in the lubrication oil. Online water-in-oil monitors have been introduced in recent years to monitor the effects of both particles and the presence of water in oil and their combined effect.
Digits one and two together are used to define the inner diameter (ID), or bore diameter, of the bearing. For diameters between 20 and 495 mm, inclusive, the designation is multiplied by five to give the ID; e.g. designation 08 is a 40 mm ID. For inner diameters less than 20 the following designations are used: 00 = 10 mm ID, 01 = 12 mm ID, 02 = 15 mm ID, and 03 = 17 mm ID. The third digit defines the "diameter series", which defines the outer diameter (OD). The diameter series, defined in ascending order, is: 0, 8, 9, 1, 7, 2, 3, 4, 5, 6. The fourth digit defines the type of bearing:
The fifth and sixth digit define structural modifications to the bearing. For example, on radial thrust bearings the digits define the contact angle, or the presence of seals on any bearing type. The seventh digit defines the "width series", or thickness, of the bearing. The width series, defined from lightest to heaviest, is: 7, 8, 9, 0, 1 (extra light series), 2 (light series), 3 (medium series), 4 (heavy series). The third digit and the seventh digit define the "dimensional series" of the bearing.
There are four optional prefix characters, here defined as A321-XXXXXXX (where the X's are the main designation), which are separated from the main designation with a dash. The first character, A, is the bearing class, which is defined, in ascending order: C, B, A. The class defines extra requirements for vibration, deviations in shape, the rolling surface tolerances, and other parameters that are not defined by a designation character. The second character is the frictional moment (friction), which is defined, in ascending order, by a number 1–9. The third character is the radial clearance, which is normally defined by a number between 0 and 9 (inclusive), in ascending order, however for radial-thrust bearings it is defined by a number between 1 and 3, inclusive. The fourth character is the accuracy ratings, which normally are, in ascending order: 0 (normal), 6X, 6, 5, 4, T, and 2. Ratings 0 and 6 are the most common; ratings 5 and 4 are used in high-speed applications; and rating 2 is used in . For tapered bearings, the values are, in ascending order: 0, N, and X, where 0 is 0, N is "normal", and X is 6X.
There are five optional characters that can defined after the main designation: A, E, P, C, and T; these are tacked directly onto the end of the main designation. Unlike the prefix, not all of the designations must be defined. "A" indicates an increased dynamic load rating. "E" indicates the use of a plastic cage. "P" indicates that heat-resistant steel are used. "C" indicates the type of lubricant used (C1–C28). "T" indicates the degree to which the bearing components have been tempered (T1–T5).
While manufacturers follow ISO 15 for part number designations on some of their products, it is common for them to implement proprietary part number systems that do not correlate to ISO 15.
|
|